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Abstract-The critical conditions for the BCnard--Marangolri,comi&&ve and morphological Instabilities of 
a horizontal liquid layer of a single component, subject to a solidification process from below, are studied. 
The morphological effects, including the thickness and thermal conductivity of the solid layer and the 
capillary effect of the solid-liquid interface. have significant influences on the onset of instabilities at the 
marginal state. The analysis is based on the linear stability theory and the resulting eigenvalue equations 
are solved, using the shooting technique of Runge-Kutta-Gill’s method of order four. The eigenvalue 
Rayleigh number. R, or Mardngoni number, M, is evaluated. The numerical results indicate that the critical 
conditions decrease sensitively with the thickness ratio A for 0 < A < 1 and approach fixed values for A 
becoming large. The effects of the capillarity at the solidPliquid interface and thermal conductivity in the 
solid layer tend to stabilize the system. The conducting ways of the latent heat act as dominant roles on 

determining the possible instability of the system. 

INTRODUCTION 

THE THEORY of the morphological stability of a solid- 
liquid interface during the solidification of a dilute 
binary alloy has been studied [I]. Morphological 
instability can be coupled with thermosolutal con- 
vective instabilities through the mutual interaction of 
thermal and solutal gradients, which in turn have a 
major effect on the interfacial growth, deformation 
and movement [2-61. These studies show that a sta- 
tionary or oscillatory mode may occur. Either thermo- 
solutal convective or morphological instability can 
solely deform an initial planar interface into a non- 
planar one. The pattern formation during the crystal 
growth, with or without thermosolutal effects, has 
been studied [7-91. The onset of thermal or thermo- 
solutal convective instabilities in a horizontal fluid 
layer has been studied [ 10, 111. Davis et al. [ 121 con- 
sider the pattern selection of a horizontal liquid layer 
of a single-component, coupling BCnard convection 
and solidification. 

In these analyses above, the upper boundary is 
either assumed rigid or located at infinity. For a hori- 
zontal liquid layer of finite thickness with its upper 
surface free, the variation of surface tension with the 
temperature is also one of the main factors for causing 
the convective instability, referred to as Marangoni 
instability [13, 141. The combined effects of the ther- 

instability of a horizontal liquid layer of a single com- 
ponent with a finite thickness during the solidification. 

MATHEMATICAL FORMULATION 

A horizontal liquid layer of a single component is 
cooled from above and the freezing takes place in the 
lower part of the layer such that there exists a solid-- 
liquid interface. The physical configuration is shown 
in Fig. 1. We assume that the fluid is incompres- 
sible and the fluid density variation based on the 
Boussinesq’s approximation can be expressed as : 

P = POU -G- TO)l> (1) 
where z is the coefficient of thermal expansion and p,, 
is the density at the reference temperature r,. The 
governing equations are [ 141 : 

v*v=o, (2) 

$+(v.v)v= -~-ga(T-T”)e,+vv~v, (3) 

;+(v*v)T= KV'T, (4) 

where V = (u, t’, w) is the fluid velocity and T is the 
temperature in the hquid layer, p is the pressure, v is 

ma1 buoyancy and surface tension, known as BCnard- - the kinematic viscosity and K is the thermal diffusivity. 
Marangoni instability, have been extensively studied The boundary conditions of the solid-liquid inter- 
[15-171. face, at = = ~I(x,J, t), are that the tangential com- 

The purpose of the present study is concerned with ponents of the fluid velocity vanish (i.e. no-slip 
the morphological effects on the BCnardSMarangoni condition) : 

1935 
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NOMENCLATURE 

a the wavenumber of the small Y surface tension 

disturbance l- capillarity constant 

A thickness ratio, &/hr A Tr, AT, the difference of temperature 

Bi Biot number, Hhr/& across the liquid layer and solid 
Bo Bond number, pghE/y layer 
C Crispation number, p~/yh~ ? position of the solid-liquid 
C, capillarity number at solid-liquid interface 

interface, TJ/AT,h, thermal diffusivity 
e, unit vector in the z-direction : the non-dimensional solid-liquid 
9 gravitational acceleration interfacial deflection 
hr, h, thickness of liquid and solid plate p viscosity of fluid 
H heat transfer coefficient of the liquid kinematic viscosity of fluid 

layer ; position of the upper free surface 
K thermal conductivity P density of fluid 
L” the latent heat of fusion per unit z surface tension gradient with respect 

volume of solid to temperature, +/aT 
M Marangoni number, zATh,/vKp Cl,, R, real and imaginary growth rates with 
P pressure time. 
Pr Prandtl number, V/K 

R Rayleigh number, agAThh:/vK 
S latent heat number, LJKLATL 

Superscript 

t time 
non-dimensional perturbed 

T temperature 
quantity. 

TM the freezing temperature of the pure 
substance Subscript 

V velocity (u, 0, w) C critical value 
Z the non-dimensional surface deflection i property of solid-liquid interface 
x, I’, z coordinates. L property of liquid layer 

0 initial value 
Greek s)unbols r ratio of solid plate property to that of 

a thermal expansion coefficient of the liquid 
fluid density S property of solid plate. 

vxii, = 0, 

and the normal component satisifies : 

“, ‘fii(PL--Ps) = (v*fi,)PL, 

(5a) the solid-liquid interface. The conservation of energy 
at the solid-liquid interface satisfies : 

(5b) 
(v;ii,)L, = (-K,VT+K,VT,).ii,, (5c) 

where L, is the latent heat per unit volume and KL 
where vi is the local solidification velocity, iii is the unit and KS are thermal conductivities of liquid and solid, 
vector normal to the solid-liquid interface, and p,_ and respectively. With supercooling, the dependence of the 
ps are the liquid and solid densities, respectively, at freezing temperature on the capillary effect gives : 

Liquid layer 

solid-liquid interface 

Solid layer 

FIG. 1. Physical model. 
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T = T, = T, , (54 

T, = TM-TMl- VI%/ 

[l +(v,r)2]3’2 ’ 
(54 

where TM is the freezing temperature of the pure sub- 
stance, r is the capillarity constant, Vt = a2/ax2 + 
a2/8y2 is the horizontal Laplacian operator and 
WI1 + (vhd213’2 IS the mean curvature of the solid- 
liquid interface [l-7]. 

The governing equation for the temperature Ts in 
the solid layer is : 

sEK V2T 

at S S? 

where ks is the thermal diffusivity coefficient of the 
solid layer. As usual, V2 is the Laplacian operator : 

8 a2 a2 
v’=k’+7+2’2 

aJ 
(7) 

The upper surface of the liquid layer is deformably 
free with its position at z = h+q(x, y, t). The bound- 
ary conditions of velocity, heat flux and tangential 
and normal stresses at the free upper surface are [17] : 

(84 

K,VT*ii+HT= 0 WI 

~/JO,,, = FTVT*i @c) 

@,-p)+$D,, = yV*fi, (gd) 

where H is the heat transfer coefficient of the liquid 
layer, { Dii} is the rate of strain tensor in the fluid, i and 
ii denote the tangential and the normal unit vectors at 
the free upper surface, and y is the surface tension, for 
which we adopt the simple linear form : 

Y = YO -W- To), (9) 

where y. is a constant reference value and r is the rate 
of change with temperature. On the bottom face of 
the solid layer, the temperature Ts is kept fixed. 

The basic solutions of steady-state consist of the 
zero velocity, the hydrostatic pressure p, the planar 
solid-liquid interface and the purely conductive tem- 
perature fields. After applying the boundary con- 
ditions to the energy equations, we get the basic linear 
temperature distributions in the liquid and solid layers 

Z-hs 
T= WL,,, 

z-hs 
i=s = T,-AT,--- 

hs ’ 

and 

h = hs+hL. 

(104 

. 

(1Oc) 
From the condition of energy conservation (5~) we 
have 

Choosing hL, ht/rc, K/h, and ATL as characteristic 
length, time, velocity and temperature, respectively, 
the perturbed governing equations of the liquid layer 
in the non-dimensional form can be obtained as : 

& $Vw’) = RV;e’+vw’, (12) 

a01 - = w’+V2fY. at (13) 

Here w’ and 8’ are the non-dimensional z component 
of the perturbation velocity and temperature, respec- 
tively. Pr and R are the Prandtl number and Rayleigh 
number, ,defined as I 

“Pr = v/x R = cxgAT,h$w. (14) 

The dimensionless perturbed governing equations of 
the solid layer are : 

ae; 
- = ve&. at (15) 

Here the coordinates, time, and temperature are non- 
dimensionalized by hs, hi/r+ and AT,, respectively. 
0, is the non-dimensional z component of the per- 
turbation temperature. 

Similarly the dimensionless perturbed boundary 
conditions on the upper free surface at z = h are : 

g+BiO’= Bit’, (16b) 

(16~) 

w’+lW,2([‘-8’) = 0, (16d) 

where 5’ is the non-dimensional surface deflection ; C, 
Bi, Bo and Mare the Crispation number, Biot number, 
Bond number and Marangoni number, defined as : 

C = wdvk Bi = Hh,/K,_ 

Bo = pgh;/y M = TATLhL/vKp. (17) 

The boundary conditions at the liquid-solid interface 
(z = 7) are : 

,$” = 1 _ ps Y ( > pL at ’ 

awf -_=O aZ 1 

(184 
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(184 

e: -rj = c,v;$, We) 
where q’ is the non-dimensional solid-liquid interface 
deflection ; K, = KS/K, is the ratio of the thermal con- 
ductivities of solid layer to liquid layer ; S and C, are 
the latent heat number and the capillarity number, 
defined as : 

S = LJK,AT, C, = TMr/ATLhL. (19) 

The bottom boundary of the solid layer, at z = 0, is 
fixed with a constant temperature, 

0; = 0. (20) 

The perturbation quantities in a normal mode form 
[l, 81 are: 

(M”, B’, r/‘, l’) = [W(z), O(z), A(z), Z(z)] 

and 

x exp [i(a,x-+a,y)+Rt], (21a) 

0s = Os(zs) exp [i(as,~+as~r) +!&I, (21b) 

where a = Jw and a, = Jm are the 
wavenumber of the disturbances at the liquid and 
solid layers, respectively, and a, = Au, zL = (z-hS)/hL 
and zs = z/hs, 0 = Q + if& is the reaction of the dis- 
turbances to the system, Q, is the growth rate. If 
R, > 0, the disturbances grow and the system becomes 
unstable, while, if R, < 0, the disturbances decay and 
the system becomes stable. When R, = 0, the insta- 
bility of thystem occurs in the marginal state, 
stationary (a, = 0) or oscillatory (Q, # 0). 

By substituting equations (21a) and (21b) into 
equations (12)) (13) and (15), then the stationary gov- 
erning equations of the perturbed state are : 

c (0’ -u2)’ W = u’R@, (22) 

(D’-a’)@ = - W, (23) _ 
(0; -u:)@, = 0, (24) 

where the operators D = a/i3z, and D, = djaz,. 
The boundary conditions at the upper free surface, 

atz= 1,are: 

w=o, (25a) 

(D + Bi)O = Bi Z, (25b) 

-C(D’-3a’)DW+(Bo+a’)a’Z = 0, (25~) 

(D’+a’)W+Mn’(O-Z) = 0. (25d) 

The boundary conditions at the solid-liquid interface, 
atz=Oorz,= l,are: 

p! 
w= 0, (26a) 

DW=O, (26b) 

0-A = $(@,-A), (26~) 
I 
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and the boundary condition at the bottom surface, at 
zs = 0, is : 

0s = 0. (27) 

NUMERICAL PROCEDURE 

The governing equations (22))(24) and boundary 
conditions (25)-(27) form a Sturm-Liouville’s prob- 
lem with the Marangoni number M or Rayleigh num- 
ber R being the eigenvalue and other physical par- 
ameters such as : C, Bo, Bi, A, K,, C,, a and a, fixed. 
The shooting technique, based on the fourth-order 
Runge-Kutta-Gill’s method [18], is used to solve the 
problem. 

The first step in the procedure is to write equations 
(22))(24) as a system of first-order equations. Then 
we set, for the liquid layer : 

w= U,, 

DW= Du, = u2, (284 

D’W= Du, = ui, (28b) 

0' W = Du, = u4, (284 

0 = us, 

DO = Du, = u6, (28d) 

D4 W = Du, = 2a*u, -a4u, + Ra’u,, (28e) 

D’O = Du, = a2u5-u,, 

and, for the solid layer, 

0, = u,, DsOs = Dsv, = v2, 

D.& = Dsv, = aiv,. 

(280 

(294 

(29b) 

The shooting procedure starts from the upper 
boundary, at z = 1, and tries to match the boundary 
conditions at the liquid-solid interface, at z = 0 or 
zs = 1, and then forward to match the boundary con- 
ditions at the lower boundary, at zs = 0. The upper 
boundary conditions (25a)-(25d), at z = 1, can be 
expressed as : 

u, =o, (304 

u3 = -3Ma’C/(Bo+a’)u2 

+MC/(Bo+a2)u4-Ma* us, (fi) 

u6 = -3Bi(‘/(Bo+a’)u, 

+BiC/(Boa2+a4)u,-Biu,; (3Oc) 

we shall guess three boundary conditions : 

uj = c, I44 = c2 u3 = c3, (31) 

then the general form of the solution becomes : 

u=cJJ,gtc2u2+cJJ,, (32) 

DO = D,O,, (26d) where : 
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u= [UlrU2,U3,U4,US,U61Tr (334 

u, = [O, 1, -3Ma*C/(Bo+a*),O,0, 

-33BiC/(Bo+~~)]~, (33b) 

CT2 = [O,O,MC/(Bo+a’),l,O,BiC/ 

(Boa* +a4)lT, (33~) 

lJ1 = [O,O, -Ma’,O, l,-Bi]*. (334 

We may guess a value for M or R, assume each of 
U,, , = ,,3 as a set of initial conditions and start the shoot- 
ing procedure, using the RungeeKuttaGill’s method 
of order four, from z = 1 and try to match the bound- 
ary conditions at the liquid-solid interface, at z = 0 or 
-7s = 1. The boundary conditions for U,, i = ,,3 at z = 0 
are then transformed into a set of initial conditions 
for V,. , _ 1.3 at zs = 1, such that, using the boundary 
conditions (26c))(26e) : 

where 

V=c,V,+(.~V*+C)V?, (34) 

v = [v,, vJT, (344 

(34b) 

vf = u:, (34c) 

and the superscripts indicate the elements of U, or V,. 
Then, again, start using the same shooting procedure 
from zs = 1 and try to match the boundary conditions 
at - - 0. The boundary conditions at the solid-liquid ‘S - 
interface, (26c)-(26e), and at the lower boundary, 
(27), should be satisfied simultaneously and the results 
then turn into a matrix form, 

For c, being non-trivial, the determinant of the matrix 
shall vanish. With fixed values of physical parameters 
A, K,, C,, C, Bi, Bo and wavenumbers a and a,, the 
Rayleigh number R or Marangoni number M is thus 
solved with its critical value R, or M, marking the 
onset of instability at the marginal state. 

RESULTS AND DISCUSSION 

Validation 
The numerical results are checked and compared 

with previous ones. Davis et al. [12] consider a fluid 
layer of single component with its both upper and 
lower boundaries rigid and isothermal (i.e. Bi + co). 
The freezing process does occur from below and the 
solid-liquid interface is assumed flat (i.e. C, + co). 
The critical Rayleigh number as a function of the 

1700 
1707.818 

__ Present study 
cZ non00 Davis et al. [12] 

/ 

-I 1493.795 

; 1400L 
0.0 1.: 2.0 3.0 4.0 5.0 

Ratio of thickness, A 
FIG. 2.‘The~e&~t of A on the morphological instability with 
the Rayleigh~&nard convection for Bi + x, C = 0 and 

c, + 30. 

thickness ratio A is plotted in Fig. 2. The results are 
identical to those obtained by Davis et al. [12]. For 
the intermediate region of A, 0 < A < 1, a strong 
dependence of the critical condition on the thickness 
ratio A is shown. It is of interest to note that R, 
decreases with A monotonically, beginning at a value 
of 1707.818 and then approaching an asymptotic 
value of 1493.795. 

For the case A = 0, the system, before the freezing 
takes place, is treated as a layer of pure fluid with 
upper free and lower rigid boundaries. For the case 
C = 0 and M = 0, the system reduces to a classical 
Rayleigh-Benard problem. An insulated upper sur- 
face (i.e. Bi = 0) gives rise to a critical condition 
R, = 669.234 and a, = 2.086, while an isothermal one 
(i.e. Bi -+ co) does correspond to a critical condition 
R, = 1101.210 and a, = 2.683, as obtained by Spar- 
row et al. [lo]. Similarly, in the absence of the thermal 
buoyancy (i.e. R = 0), we do recover a classical Mar- 
angoni problem with the critical condition 
IV, = 79.603 and u, = 1.993 for C = 0 and Bi = 0, as 
previously obtained by Nield [ 151 and Carlos and 
Graciela [ 171. 

Rayleigh-BCnard convection 
The coupling mechanism between morphological 

and Rayleigh-Benard convective instabilities (i.e. 
M = 0) is considered. Figure 3 presents the critical 
Rayleigh number R, as a function of the thickness 
ratio A for various values of C,. The thickness ratio 
A increases as the solidification proceeds. We find that 
the critical Rayleigh number R, at a starting value 
669.234 for A = 0 decreases sensitively with the thick- 
ness ratio A for 0 < A < 1 and then approaches a 

+ixed value for large values of A. It indicates that the 
growth and deformation of the solid-liquid interface 
results in a sequence of perturbations of thermal con- 
vection, which in turn affect the interfacial movement. 
The capillary effect of the solid-liquid interface does 
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Ratio of thickness, A 
FIG. 3. The effect of C, and A on the morphological instability 
with the Rayleigh-Btnard convection for K, = 2, Bi = 0 and 

A4 = 0. 

suppress the interfacial growth and deformation acts 
as the stabilizing factor for the thermally convective 
instability. The critical Rayleigh number R, increases 
as the capillarity number C, increases. The dashed 
curve in Fig. 3 corresponds to a limiting case (i.e. 
C,, -+ co), when the solid-liquid interface is planar. 

The latent heat, released at the solid-liquid interface 
during the solidification, is conducted away from 
above or below and has a dominant effect on either the 
thermally convective or the morphological instability. 
As shoqn in Fig. 4, the critical Rayleigh number R, 
increases as the ratio of thermal conductivities K, 
increases. Physically, the more the latent heat is con- 
ducted away through the solid layer and the less it is 
stored in the liquid layer the more the system will 
become stable. The influence of the heat transfer at 
the free upper surface on the system is shown in Table 
1 and Fig. 5. When the upper surface is perfectly 
insulated (i.e. Bi =J), any thermal disturbance can 
not easily dissipate into the ambience and hence the 
system becomes more destabilizing and has a smaller 
critical value. The dashed curve corresponds to the 
critical values, when the Biot number Bi approaches 
infinity (i.e. Bi + co), at which the upper surface is 
isothermally and perfectly conducting. The critical 

1.0 2.0 3.0 4.0 5.0 
Ratio of thickness, A 

FIG. 4. The effect ofK, and A on the morphological instability 
with the Rayleigh-Binard convection for C, = 1, Bi = 0 and 

M = 0. 
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0.0 1.0 2.0 3.0 4.0 5.0 

Ratio of thickness, A 

FIG. 5. The effect of Biand A on the morphological instability 
with the Rayleigh-Btnard convection for K, = 2, C, = 0.1 

and M = 0. 

Rayleigh number R, increases with the Biot number 
Bi. 

Table 1. Critical values of Rayleigh number R, and the corresponding critical wavenumber a, for different values of Bi and 
A on the morphological instability with the Rayleigh-Bbnard convection (K, = 2, C’, = 0. I and M = OF 

8’ 

A=0 
Sparrow 
et al. [IO] Present study A = 0.1 A = 0.5 A=1 A=2 
RC a, R, a, R, a, RC a, RC a, RC a, 

0 669.00 1 2.09 669.234 2.086 630.074 2.001 560.416 1.776 538.779 1.643 532.747 1.576 
1 770.569 2.3 770.860 2.293 731.832 2.223 668.477 2.053 653.600 1.975 651.029 1.952 

10’ 989.493 2.59 989.947 2.589 945.870 2.527 881.242 2.387 869.905 2.338 868.640 2.328 
lo2 1085.893 2.67 1086.450 2.672 1038.680 2.610 970.488 2.472 959.352 2.427 958.228 2.419 
10’ 1100.657 2.68 1099.690 2.682 1051.354 2.619 982.567 2.482 971.423 2.436 970.311 2.429 
co 1101.650 2.68 1101.210 2.683 1052.814 2.621 983.957 2.483 972.811 2.438 971.701 2.430 
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Table 2. Critical values of Marangoni number A4, and the corresponding critical wavenumber a, for different values of C 
and A on the morphological instability with the Marangoni convection (Bo = 0.1, Bi = 0, K, = 2, C, = 0.1 and R = 0) 

A=0 
Carlos I1 71 Present studv A = 0.1 A = 0.5 A=1 A=2 

MC 4 MC a, ML 4 Mc 0, 

1.928 72.187 1.757 70.532 1.663 70.092 1.622 
1.928 72.186 1.757 70.531 1.663 70.090 1.622 
1.927 72.174 1.757 70.517 1.663 70.075 1.621 
1.923 72.053 1.751 70.381 1.656 69.930 1.613 
0.001 66.667 0.00 66.667 0.001 66.667 0.001 
0.001 6.667 0.00 6.667 0.001 6.667 0.001 
0.001 0.667 0.00 0.667 0.001 0.667 0.001 

0 79.607 1.99 79.603 1.993 77.125 
1o-6 79.606 1.99 79.602 1.993 77.124 
1o-5 79.596 1.99 79.593 1.993 77.113 
1om4 79.499 1.99 79.496 1.989 77.011 
10-l 66.667 0.00 66.667 0.001 66.667 
1om2 6.667 0.00 6.667 0.001 6.667 
10-l 0.667 0.00 0.667 0.001 0.667 

Marangoni convection 
In the absence of the thermal buoyancy (i.e. R = 0), 

the coupling effects of the morphological and Mar- 
angoni convective instabilities are considered. The 
morphological effects include the thickness and ther- 
mal conductivity of the solid and the capillary effect 
of the solid-liquid interface. Before the system starts 
freezing (i.e. A = 0), the critical Marangoni number 
M,, for various values of the Crispation number C, 
are tabulated in part of Table 2, previously obtained 
by Carlos and Graciela [17]. The Crispation number 
C, associated with the inverse effect of the surface 
tension, shows the rigidity of the free upper surface of 
the liquid layer. From Table 2 and Fig. 6, the critical 
Marangoni number MC decreases as the Crispation 
number C increases. These decreasing trends are neg- 
ligible for 0 < C < 10m4, in which ranges the values of 
the critical wavenumbers are finite and approximately 
fixed, while the same decreasing trends become pro- 
portional and significant for C > IO-‘, in which 
ranges the values of the critical wavenumbers are 
vanishing. There exists a Crispation number C in the 
range 10-‘PIO~’ such that a jump on the Marangoni 
convective instability from a finite critical wave- 
number to a vanishing one does exist. For each 

FIG. 
with 

6. The effect of C and A on the morphological instability 
the Marangoni convection for K, = 2, C, = 0.1, 

Bo = 0.1, R = 0 and Bi = 0 at the upper surface. 

value of the Crispation number C, there are, on the 
neutral curve, two minimal points with either finite 
6r vatihhing wavenumber a, corresponding to two 
different and possible modes of Marangoni convective 
instabilities, one of which, with the smaller value of 
the Marangoni number, being the critical one, would 
occur in the marginal state, as shown in Fig. 7a 
and b. 

For the whole range of the Crispation number, the 
critical Marangoni number MC, as before, decreases 
as the thickness ratio A increases and it increases as 
the capillarity number C, increases. 

The Marangoni number M, corresponding to the 
first minimal point of zero wavenumber, is very 
indifferent to effects of both the thickness ratio A and 
the capillarity number C,, but it is quite sensitive to 
the surface tension of the free upper surface, while 
that corresponding to the second minimal point of 
finite wavenumber decreases with the thickness ratio 
A and increases with the capillarity number C, 
sensitively. 

The Bond number Bo of the upper free surface, 
being a ratio of the gravity effect to the effect of surface 
tension, indicates the dominant one of the two effects 
in flattening a curved free surface. Here, we take the 
Bond number Bo = 0.1 for simplicity. 

As shown in Fig. 8, the critical Marangoni number 
MC increases as the ratio of thermal conductivities 
K, increases. Physically, the more the latent heat is 
conducted from below through the solid layer, the less 
it is stored in the liquid layer such that the thermal 
disturbances are weaker at the upper free surface: 
therefore, the system becomes more stabilizing. 

Bhard-Marangoni convection 
The coupling effects of Bttnard-Marangoni con- 

vective and morphological instabilities are considered. 
The values of some physical parameters are chosen as 
K, = 2, C, = 0.1 and C < 10m3. The critical Rayleigh 
number R, as a function of the thickness ratio A, for 
fixed positive values of the Marangoni number M, 
is shown in Fig. 9. An increment in the Marangoni 
number, as a result of a larger variation of the surface 
tension with the temperature, indicates a decrement 
in the surface tension. We predict that the critical 
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wave number, a 

.-Y wave number, a 

FIG. 7. (a) The stationary neutral curves M(a) are plotted 
for several values of A on the morphological instability with 
the Marangoni convection for C = lo-‘, K, = 2, C, = 1, 
Bo = 0.1, Bi = 0 and R = 0. (b) The stationary neutral 
curves M(a) are plotted for several values of C, on the mor- 
phological jnstability with the Marangoni convection for 

C = lo-‘, A = 0.5, K, = 2, Bo = 0.1, Bi = 0 and R = 0. 
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FIG. 8. The effect of K, and A on the morphological instability 
with the Marangoni convection for C, = 1, C < 10W2, 

Bo = 0.1, Bi = 0 and R = 0. 
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FIG. 9. The effect ofM and A on the morphological instability 
with the Btnard&Marangoni convection for C < lo-‘. 

K, = 2, C, = 0.1, Bo = 0.1 and Bi = 0 at upper surface. 

Rayleigh number R, decreases as the Marangoni num- 
ber Mincreases. For M > 79.603, the critical Rayleigh 
number R, becomes negative and the Marangoni con- 
vective instability is solely dominant. The locus of 
(MC, R,) at the marginal state, for various values of A 
and Bi = 0, is plotted in Fig. 10. When the Marangoni 
number M = 0 and the thickness ratio A = 0, cor- 
responding to the dashed curve, the critical Rayleigh 
number R, is 669.234 and decreases as the value of the 
thickness ratio A increases and approaches a limiting 
value of 532.446. Similarly, the same dashed curve, 
for the Rayleigh number R = 0 and A = 0, gives the 
critical Marangoni number M = 79.603 and it 
decreases as the thickness ratio A increases and 
approaches a limiting value of 70.072. The results 
indicate that the increments of the Rayleigh number, 
Marangoni number and thickness ratio A tend to de- 
stabilize the system. 

CONCLUSIONS 

The linear and stationary analysis of the critisal 
conditions for the coupling effects of the BCnard- 
Marangoni convective and morphological instabilities 
of a horizontal liquid layer of a single component 
during the solidification has been studied. The fol- 
lowing results have been obtained. 

1. The morphological effects, including the thickness 
and thermal conductivity of solid layer and the 
capillary effect of the solid-liquid interface have 
significant influences gn the onset of instability at 
the marginal state. A larger value of the capillary 
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Fit;. 10. Locus of crltical Marangoni number 1M, and critical 
Rayleigh number R, for different values of A in C < IO ‘, 

= 2, CT,, = 0.1, Bo = 0. I and Bi = 0 at upper surface : 0 
R, = 669.234; n M, = 79.603). 

effect and thermal conductivity in the solid layer 
tends to stabilize the system. 
The critical conditions, R, and M,, decrease sen- 
sitively as the thickness ratio A increases for 
0 < A < I and approach fixed values. 
The conduction of the latent heat has a dominant 
role in determining the possible stability of the 
system. Similarly, as the Biot number Bi, associated 
with the conductive character of the heat transfer 
at the upper free surface, increases. the system 
become more stabilizing. 
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